
@Kode24-dagen 4.0
27th March

 Bobby Westberg

Faster FE-stack in 2025

Faster stack - we’re improving the DX and time-to-production!

Replacements for your standard tooling

 Focus on modern tools (Rust or Go)

 What goes out? What comes in?

 Pros & cons

 Experiences

 Download-link at the end (Includes cut-outs!)

 Faster FE-stack in 2025

 JavaScript historically built our stack

with inherited limitations

 Rust/Go "revolution"

(Rust, Go, Zig, C, C++)

not new, but increased popularity for webdev-tools

 JavaScript and CSS evolution

browsers improve

Let’s rethink our habits!

 Why replace?

https://www.rust-lang.org/
https://go.dev/
https://ziglang.org/

This is not a talk about Rust/Go … but:

Compiles to native code

CPU-usage, threading, memory-control

Communicates very good with JS

And a lot more!

= Unbeatable speed

 PS: Not a silver bullet

 But … why Rust/Go!?

https://www.youtube.com/live/5mn3EpWCcJs?t=18250s

Hi!

Gjensidige: 5 years (and counting)

Discipline Leader for front-end

How it began
'94

'97 ffuniverse.nu

Eventually: education and a job

Misc jobs, 11 as webdev

Enonic (open source): 7 years

Still their Swedish translator

` `

https://www.ffuniverse.nu/

One of the 10 largest on Oslo stock exchange

Cloud-platform: GAP (gap.gjensidige.io) on Azure

Code, CI/CD: GitHub

Communication: Slack (us "Techies")

Front-end: React

Back-end: Java/Kotlin, ASP.NET, even COBOL

150
front-enders

600
in tech

4800+
employees

Gjensidige

https://gap.gjensidige.io/

Gjensidige’s design system

Webapps + internal + mobile

 React-components

 Documentation with Storybook

 Internal only (but open docs)

 Designs in Figma

Builders Core

https://www.gjensidige.builders/docs/core/

78 000 lines of code

(but, this includes a lot of .mdx)

Monorepo with 7 packages

(components, icons, fonts, tokens, ++)

Maintained by Squad Design system (my team)

Cross-disciplinary, 8 members

42
components

400
webapps

2200+
web pages

` `

Stats about Builders Core

https://monorepo.tools/

 Tried all the talks’ modernisations, Builders Core have:
Fewer dependencies

Faster installs

Faster builds

Faster testing

Faster linting

Smaller package sizes

Easier-to-understand code

Speed-ups in CI/CD

15min
2023

8-9min
2024

4-5min
2025

10 000
minutes

Gains for Builders Core

Broad list of varied suggestions

New for someone, old for others - hopefully something for you

Meta-frameworks (Astro, Next.js, Remix) not included

Builders Core’s new speed is not only because of modern tools

Vite: replaced Rollup and Babel (and almost 20 plugins)

Vitest (and jsdom): replaced Jest and Cypress

 Before we start

Era of Rust & Go

 TypeScript
Two weeks ago, Microsoft announced TypeScript Go-rewrite.

This will make it 10+ times faster!

Maybe a beta for summer 2025.

Before we replace …

https://devblogs.microsoft.com/typescript/typescript-native-port/

 husky, lint-staged
Interested in replacing two tools with one?

Tooling for git hooks:

Do extra stuff when you do something with git

Example: on git push , run all tests

Example: on git commit , run prettier

Husky is popular

But so is simple-git-hooks, and pre-commit

To only lint staged files, Husky requires lint-staged

Prettier has pretty-quick

Requires quite a lot for setup (special folders and files, install script)

` `

` `

 Husky, lint-staged

https://typicode.github.io/husky/
https://github.com/toplenboren/simple-git-hooks
https://pre-commit.com/
https://www.npmjs.com/package/lint-staged
https://github.com/prettier/pretty-quick

By EvilMartians

 A lot faster!

 Can run commands in parallel

 Very good docs (and guides)

 More intuitive setup & config (lefthook.yml)

 Rather new in the git hooks-space

 Git hooks are still scary

` `

 Lefthook

https://evilmartians.com/

Migrating was worth it, but a bit tricky

Mainly because of commit message-linting

Now only use lefthook.yml

Got to move some "git hooks"-code from package.json

` `

` `

Gjensidige

 eslint, prettier

Go-to tools in almost any project, with a slew of extensions

eslint helps us keep code quality high

prettier helps us format the code the same way

Usually needs extra plugins/extensions

Go-to tools for almost any stack

` `

` `

 ES-lint, Prettier

oxc - collection of JS-tools (all Rust)

Now Void(0) - initiative by Evan You (inventor of Vue.JS, Vite, and more)

 Up to 100 times faster than eslint!

 Philosophy: sane defaults, less plugins

 Doesn’t fix lint-errors … scratch that as of last week

 Doesn’t replace prettier (but another tool by oxc under development)

 No type-rules (like typescript-eslint), or style-rules

Docs warn: "oxlint is not yet ready as a full eslint replacer"

But depends on your project size and requirements

` `

 oxlint

https://voidzero.dev/
https://oxc.rs/blog/2025-03-15-oxlint-beta.html

 35 times faster than Prettier

 Biome replaces both eslint (and typescript eslint) and Prettier

 Comes with migration-scripts (for eslint & prettier)

 Not a 100% drop-in replacement …

yet (does 97% of Prettier)

 Like oxlint: defaults, batteries included (no extensions)

 Release-frequency

Last minor 1.9: 7 months ago - last patch 1.9.4: 5 months

 2.0 to come this year

 Biome

We started using oxlint in CICD for faster quality-check

A couple teams are using oxlint, a handful Biome

Rather simple to replace

Usually, only exception is git hooks

And that you might loose some feature

80 000
lines code

12s
eslint

27ms
oxlint

Gjensidige

 lerna

Go-to tool for doing monorepos since forever

All package managers now understand monorepos (workspaces)

For build , test , release , we need monorepo tooling

 Lerna does a lot of things …

gives us Conventional Commits-versioning

 but is very very big.

 Not fast

 Lacks cache

Been around long, acquired by Nrwl a few years ago

 Nrwl also develop Nx (Rust-based)

Claims to be the fastest tool - but also more paid service

` `

` ` ` ` ` `

 Lerna

https://www.conventionalcommits.org/en/v1.0.0/
https://nx.dev/recipes/adopting-nx/from-turborepo#why-migrate-to-nx

By Vercel (creators of Next.js)

 A lot faster than Lerna

 Cache-mode called "turbo"

Only build / test / lint what is changed

 Defaults to Vercel’s cloud (usually paid)

 … but you can configure this and use your own

 Cannot do versioning, git tag, publishing

Luckily, there’s a tool for that:

` ` ` ` ` `

 Turborepo

Changesets for tag, version, changelog, and releases

 Yet a package

 Not a Rust-tool

but if you wanna replace Lerna you’ll need something

 Dialog-based releases using CLI

Feels odd, gets used to it

Auto-generated logs with conventional commits rewritten for Slack++

Changesets gave more control, flexibility

 Changesets

https://github.com/changesets/changesets/tree/main

Cache gets us even faster!

First month rocky, not anymore

(turbo hanged sometimes during build)

(not 100% sure caused by turbo…)

Prob our most troublesome update

Still worth it

35s
lerna build

21s
turbo build

31s
lerna test

15s
turbo test

Gjensidige

 sass (or less)

We used Less, but not any more, and the replacement is NOT built with

Rust or Go

 Built when CSS couldn’t do much

 Not that fast

 Packs some weight

What are you really gaining?

Nesting? Variables? Mixins?

 Sass/Less

 CSS evolves so fast

 Modern browsers too

 Variables works great

Mixins mostly got in our way

 Nesting is improving

Install PostCSS nesting

Hook into your Vite-config

Builders Core went this direction

Disappointed I didn’t show a Rust-tool?

 Just do vanilla!

https://github.com/csstools/postcss-plugins/tree/main/plugins/postcss-nesting#readme

Can’t be a Rust/Go-talk without mentioning LightningCSS

Haven’t tried this (yet)

But some of our teams have

 Claims over 100 times faster than CSSnano

 All the features:

Vendor-prefixing, write latest CSS today, minify, modules, ++

 LightningCSS

https://lightningcss.dev/

The elephant

 Node + NPM

Replacing small packages here and there, but what about the beast

itself?!

Been around for a looooong time

Architected in a completely different FE-world

Supports a lot of legacy

We now have much better contenders
They’re a lot faster

Can often replace a slew of other tools/packages

Like dotenv , jsx and typescript` ` ` ` ` `

 Node, NPM

By Node-creator

2018: said node/npm arcitechtual mismatch with modern JS

Deno 1: 2020

Deno 2: 2024

 Faster, smarter, better DX, more secure

 "batteries included" - like OpenTelemetry, Linting

 Heard migration is harder than other competitors

Have not tested it … why?

Deno 1 was not an option

Deno 2 came when I was busy with …

 Deno

Bun is a new JavaScript runtime built from scratch to serve the modern JavaScript
ecosystem.

Developed using zig

v1 1.5 years ago

 Replaces Node and NPM (and more)

 Designed to start and run fast, "up to x4"

 "Batteries included":

Package-manager, native TypeScript-support,

JSX-support, ++

` `

 Bun

 Closest "drop-in-replacement for Node and NPM"

Even works side-by-side with node/npm

Uses package.json and node_modules

But custom bun.lock and bunfig.toml

 Lacks some edge-case node-features

 Still 98% Node-compatible

 Using Node APIs in your code? Must re-map!

 Identical APIs, change only the import:

Prepend with node:

import * from "fs" becomes import * from "node:fs"

` ` ` `

` ` ` `

` `

` ` ` `

 Bun (continued)

Builders Core: 3 months in bun-land

Our biggest webapps (and mobile app): Bun

Hesitant? Just try bun i

keep npm for npm run build etc

25s
npm i

5s
bun i

25s
npm run

build

6s
bun run

build

` `

` `

Gjensidige

Stack recap

For now …

bun replaced node/npm

oxlint replaced eslint (in cicd)

turborepo replaced lerna

lefthook replaced husky

Vanilla replaced less

` `

` `

` `

` `

Builders Core - stack anno 2025

Future

By Void(0)

Speed!

Replacement for Rollup and esbuild in Vite

Also works without Vite

"Vite is not perfect" - Evan You

Held back by Rollup and esbuild

Tools are used sub-optimal

Maybe in Vite 7?

Or sooner? - Evan: "Beta by end of March"

 Rolldown

https://www.youtube.com/live/5mn3EpWCcJs?si=Qh_Y0K2424sbhPBO
https://www.youtube.com/live/5mn3EpWCcJs?si=vcdkINlLZMgqNR6t&t=18578

ck

 OMG cutez logoz

RSbuild - the faster Vite-option

RSpack - the faster webpack/rollup-option

Says "there’s nothing faster" …

 The RS-stack

https://rsbuild.dev/
https://rspack.dev/

Rather new (1.0)

A lot faster than Vite, even RSbuild!

Against Vite’s dev != prod -philosophy (their "Why"-page)` `

 Farm

https://www.farmfe.org/docs/why-farm

For now: stay on Vite

Hoping for a "free" boost with Rolldown

But Farm looks nice

Also want to use more of Bun

Gjensidige

 Speed is not everything

Don’t go bananas

One thing at a time

There’s always a faster car

Do you have any other suggestions? Always eager to improve DX!

Bare in mind

I’m Bobby Westberg

 Download slides

at www.gjensidige.builders

(Contains a few bonus suggestions)

 Gjensidige

Thanks for listening!

https://www.gjensidige.builders/community/blog/kode24-dagen

